S. N. HAJIEV AND M. J. AGARUNOV Institute of Physics, Academy of Sciences of the Azerbaijan SSR, Baku (U.S.S.R.) (Received November 5th, 1969)

II. THERMOCHEMISTRY OF METHYLCHLOROSILANES

SUMMARY

This paper presents the results of the experimental determination of the heats of formation of trimethylchlorosilane and methyltrichlorosilane and the calculation for the heat of formation for a sixth compound in this series—gaseous monomethylmonochlorosilane has been estimated. In addition, the thermodynamic properties of the methylchlorosilanes have been listed. These were calculated on the basis of our enthalpies of formation and the entropies of these compounds cited in the literature.

INTRODUCTION

In an earlier paper¹ we discussed a new method for the combustion of liquid organochlorosilanes in a calorimetric bomb, and the determination of the enthalpies of formation of liquid $(CH_3)_2HSiCl, CH_3HSiCl_2$ and $(CH_3)_2SiCl_2$. These were found to be -79.8 ± 0.6 , -105.9 ± 0.8 and -118.4 ± 0.5 kcal·mole⁻¹, respectively.

EXPERIMENTAL

The parameters of these compounds, which were purified by using a highly efficient rectification column of a special design, are summarized in Table 1.

Under the conditions described previously¹, methyltrichlorosilane burned with either a weak explosion or no explosion, thus resulting in incomplete combustion. To ensure a sufficiently strong explosion with methyltrichlorosilane, glass spheres¹ of a larger diameter (44 mm) were used and the distance of the heater from the igniter was maintained in the range 28–30 mm.

In other respects the experimental procedure, operating conditions, calorimeter parameters, and measuring circuit data were similar to those described in our previous paper¹.

RESULTS

The results of the calorimetric experiments are presented in Tables 2 and 3.

In these Tables:

 $E_{(cont.)}$ = energy equivalent of the bomb contents

 n_1 = number of moles of hydrazine dihydrochloride in reaction (1)*

 $n_2 =$ number of moles of NH₄Cl in reaction (2)*

 q_1 = heat evolved according to reaction (1)*

 q_2 = heat evolved according to reaction (2)*

 q_3 = heat due to electric heating

 q_4 = heat due to the bomb rotation

 q_5 = heat of dissolution of CO₂ in water

 $q_6 =$ correction for reduction to HCl \cdot 600 H₂O

 $q_7 =$ heat evolved on HNO₃ formation

 $q_8 =$ correction for admixtures.

Correction for the heat of evaporation of water in the bomb is 1.33 cal for every experiment.

Intrinsic energy change and combustion enthalpy hold for the reaction :

$$(CH_3)_n SiCl_{4-n}(liq) + 2n O_2 (gas) + (2402 - 602 n) H_2O (liq) \rightarrow$$

SiO₂ (amorph., hydrat.) + n CO₂ (gas) + (4-n) [HCl · 600 H₂O] (liq)

TABLE 1

PARAMETERS FOR PURE METHYLCHLOROSILANES

Compound	B.p. (°C)	B.p. (°C)		n _D ²⁰	Chlorine content of compound $(%)$		Composition ^b	
	Actual (mm Hg)	Recalcd. for 760 mmª			Found	Calcd.	(70)	
(CH₃)₃SiCl	57.6 ₇ (759)	57.7	0.8590	1.3890	32.7	32.63	Basic compd. SiCl ₄ CH ₃ SiCl ₃	99.76 0.17 0.07
CH₃SiCl₃	66.4 ₄ (768)	66.1 ₂	1.2761	1.4123	71.1	71.15	Basic compd. (CH ₃) ₃ SiCl	99.80 0.20

^a Recalculation for 760 mm was carried out according to ref. 2. ^b Determined by gas chromatography (see ref. 1).

DISCUSSION

In order to calculate the heat of combustion of the methylchlorosilanes under study, it was assumed³ that:

 $\Delta H_{\rm f}^0 \operatorname{CO}_2(g) = -94.052 \pm 0.008 \text{ kcal} \cdot \text{mole}^{-1}$ $\Delta H_{\rm f}^0 \operatorname{H}_2 O(l) = -68.315 \pm 0.009 \text{ kcal} \cdot \text{mole}^{-1}$ $\Delta H_{\rm f}^0 [\operatorname{HCl} \text{ in } 600 \operatorname{H}_2 O](l) = -39.823 \pm 0.01 \text{ kcal} \cdot \text{mole}^{-1}.$

^{*} See ref. 1.

J. Organometal. Chem., 22 (1970) 305-311

_
- 21
_ U
\sim
\sim
ົ
-
-
- <u></u>
1
0
-
- <u>-</u>
0
-
<u>~</u>
يند
_
~
-
-
7
_
-
z
2
~
ني ا
-
~
=
-2
<u> </u>
- X.
_
1
<u> </u>
- 0
-
7
-
0
- <u>-</u>
-
~
-
- 4-
_
- 51
- 22
- H
- <u></u>
1.1
~
- 11
_
-
-
z
୍
1
=
5
~
- 7
÷
7
<u> </u>
<u>u</u>
-
- 27
-
- 12
<u> </u>
- ×
_

EXPERIMENTA	L RESULTS 1	IN THE DETERM	AINATION OF THE	FORMATIO	N ENTHALPY	or (CH ₃)) ₃ SiCl (LI	(and						
m (substance) (g)	AT _{corr.} (deg.)	E _{cont.} (cal·deg. ^{- 1})	$(E_{cal} + E_{conl.})$. $\Delta T_{corr.}$	n, (g-mole)	n2 (g-molc)	q1 (cal)	q ₂ (cal)	q ₃ (cal)	94 (cal)	4s (cal)	46 (cal)	q ₁ (cal)	q ₈ (cal)	- Δu _c (cal·g ⁻¹)
0.40417 0.44836 0.32824 0.33993 0.42756	1.1484 1.3874 0.9689 1.0753 1.2106	0.0 - 0.0 -	-2894.86 -3497.25 -2442.36 -2710.09 -3051.65	0.000474 0.000930 0.000523 0.000830 0.000830	0.00010 0.000255 0.000225 0.00020 0.00020	63.50 63.50 124.50 70.03 111.95 83.33	-0.35 -0.90 -0.79 -0.79 -0.70	118.63 362.16 158.57 313.39 96.44	37.37 37.33 37.35 37.35 37.35 37.35	0.78 0.86 0.65 0.67 0.83	-0.97 -1.27 -0.69 -0.82 -1.03	3.47 3.43 1.37 1.49 1.49	1.99 2.21 1.62 1.67 2.10	6610.59 6624.73 6628.00 6608.48 6628.95
$-\Delta u_{0}^{0} (mean)$ $-\Delta U_{0}^{0} = 719,$ $-\Delta H_{0}^{0} = 720,$ $-\Delta H_{1}^{0} = 91,8$	= 6618.95 - 1 ± 0.8 kca 0 ± 0.8 kca 1 ± 0.9 kcal	± 7.80 cal·g ⁻¹ 1·mole ⁻¹ 1·mole ⁻¹ .mole ⁻¹												
TABLE 3														
EXPERIMENTA	L RESULTS 1	IN THE DETERM.	INATION OF THE	FORMATION) AATHALPY (or CH ₃ Si(Cl ₃ (LIQI	(ain						
m (substance) (g)	Δ <i>T</i> _{carr} . (deg.)	E _{cont.} (cal·dcg. ⁻¹)	$(E_{col}+E_{cont.})\cdot \Delta T_{cort.}$	n ₁ (g-mole)	n2 (g-mole)	<i>q</i> 1 (cal)	<i>q</i> ₂ (cal)	4,3 (cal)	44 (cal)	q ₅ (cal)	q ₆ (cal)	97 (cal)	(18 (cal)	- Δuc (cal·g ^{- 1})
0.64442	0.7362	- 3.7	- 1855.53	0.000925	0.00012	123.90	- 0.42	462.78	37.35	0.34	-3.50	2.76	8.55	1901.08
0.63507	0.8454	- 9.0	-2130.99	0.000863	0.00020	115.65	-0.70	771.54	37.35	0.34	-3.07	1.93	8.42	1890.90
0.62022	0.8122	- 8.8 2 2	-2047.17	0.001010	0.00023	135.21	-0.81	690.15	37.37	0.33	-3.87	3.31	8.23	1900.26
0.63647	0.6915	89.00 1	-1742.93	0.000724	0,0000	97.10	-0.32	397.13	37.34	0.34	-2.37	2.48	8.44	1891.87
0.71071	0.7807	- 9.0	- 1967.92	0.000885	0.00017	118.60	-0.60	463.18	37.35	0.37	-3.43	2.62	9.43	1887.89

 $-\Delta u_{e}^{0}(mean) = 1894.40 \pm 5.30 \text{ cal} \cdot \text{g}^{-1}$

 $-\Delta U_0^{\circ} = 283.2 \pm 0.8 \text{ kcal} \cdot \text{mole}^{-1}$ $-\Delta H_0^{\circ} = 283.8 \pm 0.8 \text{ kcal} \cdot \text{mole}^{-1}$ $-\Delta H_1^{\circ} = 147.2 \pm 0.9 \text{ kcal} \cdot \text{mole}^{-1}$

The selection of the enthalpy of formation for the amorphous, finely dispersed hydrated silica which is formed when burning organosilicon compounds, is difficult. Although this value is fundamental for thermochemistry of organosilicon compounds, its selection has not yet been thoroughly analysed. Therefore, we think it necessary to give, on the basis of a survey of literature data, our own considerations about the selection of this value.

The enthalpy of formation for α -quartz reported by Hubbard and co-workers⁴ as -217.72 ± 0.34 kcal·mole⁻¹ is now universally accepted. This value is also confirmed by the results of Good⁵ (-217.5 ± 0.5 kcal·mole⁻¹) obtained by another independent method. Later, Hubbard and co-workers⁶ in another paper made a reliable determination of the enthalpy of amorphous glassy silica formation as -215.94 ± 0.31 kcal·mole⁻¹.

The heats of formation of other SiO₂ modifications are calculated from the data on the heats of quartz transformation into these modifications, obtained by measuring the heats of dissolution of the latter in HF⁷⁻¹⁴. The published results though not in good agreement, make it possible to suggest that the heat of quartz transformation into a certain amorphous modification will rise (in terms of absolute value) from 1.0 to 3.0 kcal·mole⁻¹ with increase in the degree of dispersion of amorphous SiO₂ (in ref. 10 ΔH^0 [SiO₂(quartz) \rightarrow SiO₂(amorph., finely dispersed)]=3.3 kcal·mole⁻¹, but in view of the findings of other workers¹¹⁻¹³ this value may be considered to be somewhat overestimated).

Even less clearly understood are the solubility in water and hydration heat of various amorphous forms of SiO₂ in water. The value ΔH_{hydrat} . SiO₂ = +1.5 kcal·mole⁻¹, reported by Mulert⁷, is obsolete and erroneous. It is surprising that it has been used by the authors of fundamental reference work^{3,15}. Thiessen and Koerner¹⁶ have reported that the values for the heat of decomposition of hydrates, SiO₂·2H₂O, 2SiO₂·3H₂O and SiO₂·H₂O are in the range +1.2 to +1.5 kcal per mole SiO₂, *i.e.*, this value is opposite in sign to that of Mulert. Some otjer works¹⁷⁻¹⁹ dealing with the silica hydration process also indicate that this process is exothermal. It can be readily concluded therefore that increased specific surface of the material results in increase of the hydration heat in terms of absolute value, *i.e.*, it is expected to be greatest in finely dispersed SiO₂. It has been shown¹⁹ that with increased specific surface of the compound, the hydration heat varies from -0.2 to -2.2 kcal mole⁻¹.

A consideration of the above work $^{7-14,16-19}$ shows that the heats of formation of amorphous hydrated silica are independent of the type of amorphous silica, *i.e.*, that

$$\Delta H_f^0$$
 SiO₂ (amorph., any type, hydrated) = ΔH_f^0 SiO₂ (quartz) +

$$+\Delta H^0[SiO_2(quartz) \rightarrow SiO_2(amorph.)] + \Delta H^0_{hydrat.} SiO_2(amorph.) \approx const.$$

Moreover, this value is close to the heat of quartz formation, since the heat of quartz transformation into a certain amorphous silica and the hydration heat for an amorphous SiO₂ of the same type are approximately equal in magnitude but opposite in sign. Therefore, we decided to use the data of the particular SiO₂ type for which the two values, ΔH_f^0 and $\Delta H_{hydrat.}^0$, had been accurately determined. As mentioned above, ΔH_f^0 has been reliably determined for amorphous glassy silica only (ΔH_f^0 SiO₂ (amorph., glassy) = -215.94 ± 0.31 kcal·mole⁻¹⁶). The heat of hydration indicated for this type of silica¹⁶⁻¹⁸ is -1.5 ± 0.5 kcal·mole⁻¹. For these reasons, we have selected the value ΔH_f^0 SiO₂ (amorph., hydrat.) = -217.4 ± 0.5 kcal·mole⁻¹. It should

J. Organometal. Chem., 22 (1970) 305-311

be noted that although this value is reasonable at the present time, it is far from being indisputably and conclusively established. A wholly reliable $\Delta H_f^0 \operatorname{SiO}_2(\operatorname{amorph.}, \operatorname{hydrat.})$ value can only be determined using special precision measurements which are planned for future studies.

The experimental heat-of-formation values for five methylchlorosilanes, can be used to calculate the enthalpy of formation of the sixth compound in this series, gaseous CH_3SiH_2Cl .

A simple and rather accurate calculation method is that applied by Bernstein²⁰ to methane derivatives. The bond and interaction contributions (Table 4) necessary for this procedure were found from eqn. (1) (on the basis of the experimental values) using the least-squares method. The heats of evaporation of the methylchlorosilanes were taken from the literature²¹⁻²². The enthalpy of formation of gaseous CH₃-SiH₂Cl was found to be $-60.2 \text{ kcal} \cdot \text{mole}^{-1}$.

TABLE 4

BOND AND INTERACTION CONTRIBUTIONS FOR CALCULATING THE THERMOCHEMICAL PROPERTIES OF METHYL-CHLOROSILANES

Bond contri	butions		Interaction con	tributions	
Bond	for $\Delta H_{ m f}^0$ (kcal)	for S ⁰ (e.u.)	Interaction	for ΔH ⁰ (kcal)	for S ⁰ (e.u.)
SiH	1.97	12.42	Δ[H(CH ₃)]	0.33	0.03
Si(CH ₃)	14.41	21.38	∆(HCl)	-0.02	1.28
SiCl	40.97	19.73	∆[Cl(CH₃)]	0.26	0.81

(for gas at 25°, in kcal·mole⁻¹)

The mean energies of bond cleavage calculated from our experimental data using the least-squares method are:

 $E(Si-CH_3) = 74.8 \text{ kcal}$

E(Si-H) = 81.8 kcal

E(Si-Cl) = 98.0 kcal.

The entropies of methylchlorosilanes have been studied by many authors²³⁻²⁶. To achieve good agreement these values were also handled using Bernstein's method. The calculations were carried out with the following formula:

$$P[\operatorname{SiH}_{n}(\operatorname{CH}_{3})_{m}\operatorname{Cl}_{4-n-m}(\operatorname{gas})] = n(\overline{\operatorname{SiH}}) + m[\overline{\operatorname{Si}(\operatorname{CH}_{3})}] + (4-n-m)(\overline{\operatorname{SiCl}}) + m[\overline{\operatorname{Si}(\operatorname{CH}_{3})}] + (4-n-m)(\overline{\operatorname{SiCl}}) + m[\overline{\operatorname{SiCl}}) + m[\overline{\operatorname{SiCl}}] + m[\overline{\operatorname{SiCl}$$

$$+nm\Delta[H(CH_3)]+n(4-n-m)\Delta(HCl)+m(4-n-m)\Delta[(CH_3)Cl], (1)$$

where P is calculated property of the molecule (in this instance the enthalpy of formation or entropy), the superior lines denote different bond contributions to the magnitude of this property and Δ denotes contributions of interactions between atoms two at time.

309

Table 5 gives our recommended values of enthalpy of formation (ΔH_f^0) , entropies (S⁰), entropies of formation (ΔS_f^0) and isobaric potentials of formation (ΔG_f^0) for the methylchlorosilanes in the gaseous state.

TABLE 5

THERMOCHEMICAL PROPERTIES OF METHYLCHLOROSILANES

(for gas at 25°)

Compound	$\frac{\Delta H_f^0}{(\text{kcal} \cdot \text{mole}^{-1})}$	S ⁰ (e.u.)	ΔS ⁰ (e.u.)	$\Delta G_{\rm f}^0$ (kcal·mole ⁻¹)
SiCH ₃ Cl ₃	-139.8	83.0	-49.6	-125.0
Si(CH ₃),Cl ₂	-110.9	85.5	- 68.7	-90.4
Si(CH ₄) ₄ Cl	-84.6	86.3	- 89.3	- 58.0
SiHCH ₃ Cl ₃	99.0	77.5	-44.1	
SiH(CH ₄) ₂ Cl	-73.0	77.9	-65.2	- 53.6
SiH ₂ CH ₃ Cl	-60.2	69.4	-41.1	47.9

CONCLUSIONS

1. The enthalpies of combustion of trimethylchlorosilane and methyltrichlorosilane were measured using explosive combustion in oxygen in a rotating tantalum bomb; the following values were obtained:

 $\Delta H_c^0(CH_3)_3 \text{SiCl}(\text{liq}) = -720.9 \pm 0.8 \text{ kcal} \cdot \text{mole}^{-1}$ $\Delta H_c^0 CH_3 \text{SiCl}_3(\text{liq}) = -283.8 \pm 0.8 \text{ kcal} \cdot \text{mole}^{-1}.$

2. The enthalpies of formation of the compounds under study were calculated :

 $\Delta H_{\rm f}^{0} ({\rm CH}_{3})_{3} {\rm SiCl} ({\rm liq}) = -91.8 \pm 0.9 \text{ kcal} \cdot \text{mole}^{-1}$ $\Delta H_{\rm f}^{0} {\rm CH}_{3} {\rm SiCl}_{3} ({\rm liq}) = -147.2 \pm 0.9 \text{ kcal} \cdot \text{mole}^{-1}.$

The value of the enthalpy of formation of trimethylchlorosilane obtained by Beezer and Mortimer²⁷ using the hydrolysis method is $\Delta H_f^0(CH_3)_3SiCl(liq) = -91.9 \pm 0.8 \text{ kcal} \cdot \text{mole}^{-1}$. It is the only value given in the literature and is in a very good agreement with our data.

3. The enthalpy of formation of monomethylmonochlorosilane was calculated on the basis of our experimental data using Bernstein's method as $\Delta H_{\rm f}^0$ CH₃SiH₂Cl (gas) = -60.2 kcal·mole⁻¹.

4. The thermochemical parameters of methylchlorosilanes (ΔH_f^0 , S^0 , ΔS_f^0 , and ΔG_f^0) were computed and tabulated.

5. The selection of the value ΔH_{f}^{0} SiO₂ (amorph., hydrat.) = -217.4 ± 0.5 kcalmole⁻¹ was substantiated by a literature analysis.

REFERENCES

1 S. N. HAJIEV AND M. J. AGARUNOV, J. Organometal. Chem., 11 (1968) 415.

- 2 A. C. JENKINS AND G. F. CHAMBERS, Ind. Eng. Chem., 46 (1954) 2367.
- 3 D. D. WAGMAN, W. H. EVANS, I. HALLOW, V. B. PARKER, S. M. BAILEY AND R. H. L. SCHUMM, Natl. Bur. Std. U.S. Tech. Note 270-1, October, 1965.

J. Organometal. Chem., 22 (1970) 305-311

- 4 S. S. WISE, J. L. MARGRAVE, H. M. FEDER AND W. N. HUBBARD, J. Phys. Chem., 66 (1962) 381.
- 5 W. D. GOOD, J. Phys. Chem., 66 (1962) 380.
- 6 S. S. WISE, J. L. MARGRAVE, H. M. FEDER AND W. N. HUBBARD, J. Phys. Chem., 67 (1963) 815.
- 7 O. MULERT, Z. Anorg. Allgem. Chem., 75 (1912) 198.
- 8 V. R. WIETZEL, Z. Anorg. Allgem. Chem., 116 (1921) 71.
- 9 E. G. KING, J. Amer. Chem. Soc., 73 (1951) 656.
- 10 C. HUMMEL AND H. E. SCHWIETE, Glastech. Ber., 32 (1959) 327; ibid., 32 (1959) 413.
- 11 J. H. E. JEFFES, F. D. RICHARDSON AND J. PEARSON, Trans. Faraday Soc., 50 (1954) 364
- 12 A. F. KAPUSTINSKII AND K. K. SAMPLAVSKAJA, Tr. Mosk. Khim.-Tekhnol. Inst. 22 (1956) 47.
- 13 D. R. TORGESON AND TH. G. SAHAMA, J. Amer. Chem. Soc., 70 (1948) 2156.
- 14 G. L. HUMPHREY AND E. G. KING, J. Amer. Chem. Soc., 74 (1952) 2041.
- 15 F. D. ROSSINI, D. D. WAGMAN et al., Selected Values of Chemical Thermodynamic Properties, Natl. Bur. Std. Circ. 500, Washington, 1952.
- 16 P. A. THIESSEN AND O. KOERNER, Z. Anorg. Allgem. Chem., 197 (1931) 307.
- 17 V. F. KISELEV et al., Dokl. Akad. Nauk SSSR, 108 (1956) 103; Zh. Fiz. Khim., 33 (1959) 65; ibid., 33 (1959) 2621; ibid., 36 (1962) 318.
- 18 J. A. HOCKEY AND B. A. PETHICA, Trans. Faraday Soc., 57 (1961) 2247.
- 19 J. A. G. TAYLOR AND J. A. HOCKEY, J. Phys. Chem., 70 (1966) 2169.
- 20 H. J. BERNSTEIN, J. Phys. Chem., 69 (1965) 1550.
- 21 W. F. LAUTSCH, A. TRÖBER, H. KÖRNER, K. WAGNER, R. KADEN AND S. BLASE, Z. Chem., 4 (1964) 441.
- 22 D. R. STULL, Ind. Eng. Chem., 39 (1947) 517.
- 23 H. MURATA, J. Chem. Soc. Japan, Pure Chem. Sect., 73 (1952) 465.
- 24 K. SHIMIZU AND H. MURATA, J. Mol. Specify., 4 (1960) 214.
- 25 H. J. SPANGENBERG, Z. Physik. Chem., (DDR), 232 (1966) 271.
- 26 V. N. KOSTRUKOV, O. P. SAMORUKOV, D. O. GUMBATOV, V. G. SHLIAKOVA, T. V. SOPOVA, L. I. KRAV-CHENKO AND L. D. POLTAVSKAIA, Organosilicon Compounds, Trudy Soveshshania, Febr., 1966, vyp. II, NIITEKhIM.
- 27 A. E. BEEZER AND C. T. MORTIMER, J. Chem. Soc., A, (1966) 514.

J. Organometal. Chem., 22 (1970) 305-311